Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 45.578
1.
Int J Mol Sci ; 25(9)2024 Apr 28.
Article En | MEDLINE | ID: mdl-38732039

Hesperidin is a highly bioactive natural flavonoid whose role in ecological interactions is poorly known. In particular, the effects of hesperidin on herbivores are rarely reported. Flavonoids have been considered as prospective biopesticides; therefore, the aim of the present study was to examine the influence of hesperidin on the host plant selection behavior of three aphid (Hemiptera: Aphididae) species: Acyrthosiphon pisum Harrris, Rhopalosiphum padi (L.), and Myzus persicae (Sulz.). The aphid host plants were treated with 0.1% and 0.5% ethanolic solutions of hesperidin. Aphid probing behavior in the no-choice experiment was monitored using electropenetrography and aphid settling on plants in the choice experiment was recorded. The results demonstrated that hesperidin can be applied as a pre-ingestive, ingestive, and post-ingestive deterrent against A. pisum, as an ingestive deterrent against R. padi, and as a post-ingestive deterrent against M. persicae using the relatively low 0.1% concentration. While in A. pisum the deterrent effects of hesperidin were manifested as early as during aphid probing in peripheral plant tissues, in M. persicae, the avoidance of plants was probably the consequence of consuming the hesperidin-containing phloem sap.


Aphids , Hesperidin , Aphids/drug effects , Aphids/physiology , Animals , Hesperidin/pharmacology , Hesperidin/chemistry , Species Specificity , Feeding Behavior/drug effects , Herbivory/drug effects , Behavior, Animal/drug effects
2.
Front Endocrinol (Lausanne) ; 15: 1374825, 2024.
Article En | MEDLINE | ID: mdl-38742194

Increasing evidence suggests that female individuals have a higher Alzheimer's disease (AD) risk associated with post-menopausal loss of circulating estradiol (E2). However, clinical data are conflicting on whether E2 lowers AD risk. One potential contributing factor is APOE. The greatest genetic risk factor for AD is APOE4, a factor that is pronounced in female individuals post-menopause. Clinical data suggests that APOE impacts the response of AD patients to E2 replacement therapy. However, whether APOE4 prevents, is neutral, or promotes any positive effects of E2 is unclear. Therefore, our goal was to determine whether APOE modulates the impact of E2 on behavior and AD pathology in vivo. To that end, mice that express human APOE3 (E3FAD) or APOE4 (E4FAD) and overproduce Aß42 were ovariectomized at either 4 months (early) or 8 months (late) and treated with vehicle or E2 for 4 months. In E3FAD mice, we found that E2 mitigated the detrimental effect of ovariectomy on memory, with no effect on Aß in the early paradigm and only improved learning in the late paradigm. Although E2 lowered Aß in E4FAD mice in the early paradigm, there was no impact on learning or memory, possibly due to higher Aß pathology compared to E3FAD mice. In the late paradigm, there was no effect on learning/memory and Aß pathology in E4FAD mice. Collectively, these data support the idea that, in the presence of Aß pathology, APOE impacts the response to E2 supplementation post-menopause.


Alzheimer Disease , Apolipoprotein E3 , Apolipoprotein E4 , Estradiol , Mice, Transgenic , Ovariectomy , Animals , Estradiol/pharmacology , Female , Apolipoprotein E3/genetics , Apolipoprotein E3/metabolism , Mice , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Humans , Behavior, Animal/drug effects , Amyloid beta-Peptides/metabolism , Disease Models, Animal
3.
Elife ; 122024 May 03.
Article En | MEDLINE | ID: mdl-38700991

The discovery of rapid-acting antidepressant, ketamine has opened a pathway to a new generation of treatments for depression, and inspired neuroscientific investigation based on a new perspective that non-adaptive changes in the intrinsic excitatory and inhibitory circuitry might underlie the pathophysiology of depression. Nevertheless, it still remains largely unknown how the hypothesized molecular and synaptic levels of changes in the circuitry might mediate behavioral and neuropsychological changes underlying depression, and how ketamine might restore adaptive behavior. Here, we used computational models to analyze behavioral changes induced by therapeutic doses of ketamine, while rhesus macaques were iteratively making decisions based on gains and losses of tokens. When administered intramuscularly or intranasally, ketamine reduced the aversiveness of undesirable outcomes such as losses of tokens without significantly affecting the evaluation of gains, behavioral perseveration, motivation, and other cognitive aspects of learning such as temporal credit assignment and time scales of choice and outcome memory. Ketamine's potentially antidepressant effect was separable from other side effects such as fixation errors, which unlike outcome evaluation, was readily countered with strong motivation to avoid errors. We discuss how the acute effect of ketamine to reduce the initial impact of negative events could potentially mediate longer-term antidepressant effects through mitigating the cumulative effect of those events produced by slowly decaying memory, and how the disruption-resistant affective memory might pose challenges in treating depression. Our study also invites future investigations on ketamine's antidepressant action over diverse mood states and with affective events exerting their impacts at diverse time scales.


Decision Making , Ketamine , Macaca mulatta , Ketamine/administration & dosage , Ketamine/pharmacology , Animals , Decision Making/drug effects , Antidepressive Agents/pharmacology , Antidepressive Agents/administration & dosage , Male , Injections, Intramuscular , Administration, Intranasal , Behavior, Animal/drug effects
4.
J Agric Food Chem ; 72(19): 11205-11220, 2024 May 15.
Article En | MEDLINE | ID: mdl-38708789

Chlorpyrifos (CPF), dichlorvos (DDV), and cypermethrin (CP), as commonly used pesticides, have been implicated in inducing neuropsychiatric disorders, such as anxiety, depression-like behaviors, and locomotor activity impairment. However, the exact molecular mechanisms of these adverse effects, particularly in both sexes and their next-generation effects, remain unclear. In this study, we conducted behavioral analysis, along with cellular assays (monodansylcadaverine staining) and molecular investigations (qRT-PCR and western blotting of mTOR, P62, and Beclin-1) to clear the potential role of autophagy in pesticide-induced behavioral alterations. For this purpose, 42 adult female and 21 male inbred ICR mice (F0) were distributed into seven groups. Maternal mice (F0) and 112 F1 offspring were exposed to 0.5 and 1 ppm of CPF, DDV, and CP through drinking water. F1 male and female animals were studied to assess the sex-specific effects of pesticides on brain tissue. Our findings revealed pronounced anxiogenic effects and impaired locomotor activity in mice. F1 males exposed to CPF (1 ppm) exhibited significantly elevated depression-like behaviors compared to other groups. Moreover, pesticide exposure reduced mTOR and P62 levels, while enhancing the Beclin-1 gene and protein expression. These changes in autophagy signaling pathways, coupled with oxidative and neurogenic damage in the cerebral cortex and hippocampus, potentially contribute to heightened locomotor activity, anxiety, and depression-like behaviors following pesticide exposure. This study underscores the substantial impact of pesticides on both physiological and behavioral aspects, emphasizing the necessity for comprehensive assessments and regulatory considerations for pesticide use. Additionally, the identification of sex-specific responses presents a crucial dimension for pharmaceutical sciences, highlighting the need for tailored therapeutic interventions and further research in this field.


Anxiety , Autophagy , Behavior, Animal , Depression , Mice, Inbred ICR , Oxidative Stress , Pesticides , Animals , Female , Male , Mice , Autophagy/drug effects , Anxiety/chemically induced , Anxiety/physiopathology , Anxiety/metabolism , Depression/metabolism , Depression/genetics , Depression/chemically induced , Depression/physiopathology , Oxidative Stress/drug effects , Pesticides/toxicity , Pesticides/adverse effects , Behavior, Animal/drug effects , Locomotion/drug effects , Humans , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics , Chlorpyrifos/toxicity , Chlorpyrifos/adverse effects
5.
J Environ Sci Health B ; 59(6): 341-349, 2024.
Article En | MEDLINE | ID: mdl-38709203

The increased consumption of pesticides can have a negative environmental impact by increasing the essential metals to toxic levels. Bordasul® is a commonly used fungicide in Brazil and it is composed of 20% Cu, 10% sulfur, and 3.0% calcium. The study of fungicides in vivo in non-target model organisms can predict their environmental impact more broadly. The Drosophila melanogaster is a unique model due to its ease of handling and maintenance. Here, the potential toxicity of Bordasul® was investigated by assessing the development, survival, and behavior of exposed flies. Exposure to Bordasul® impaired the development (p < 0.01) and caused a significant reduction in memory retention (p < 0.05) and locomotor ability (p < 0.001). Fungicides are needed to assure the world's food demand; however, Bordasul® was highly toxic to D. melanogaster. Therefore, Bordasul® may be potentially toxic to non-target invertebrates and new environmentally-safe biofertilizers have to be developed to preserve the biota.


Copper , Drosophila melanogaster , Fungicides, Industrial , Animals , Drosophila melanogaster/drug effects , Fungicides, Industrial/toxicity , Fungicides, Industrial/pharmacology , Copper/toxicity , Brazil , Female , Male , Behavior, Animal/drug effects
6.
Mol Biol Rep ; 51(1): 572, 2024 May 09.
Article En | MEDLINE | ID: mdl-38722394

BACKGROUND: Alzheimer's disease is a leading neurological disorder that gradually impairs memory and cognitive abilities, ultimately leading to the inability to perform even basic daily tasks. Teriflunomide is known to preserve neuronal activity and protect mitochondria in the brain slices exposed to oxidative stress. The current research was undertaken to investigate the teriflunomide's cognitive rescuing abilities against scopolamine-induced comorbid cognitive impairment and its influence on phosphatidylinositol-3-kinase (PI3K) inhibition-mediated behavior alteration in mice. METHODS: Swiss albino mice were divided into 7 groups; vehicle control, scopolamine, donepezil + scopolamine, teriflunomide (10 mg/kg) + scopolamine; teriflunomide (20 mg/kg) + scopolamine, LY294002 and LY294002 + teriflunomide (20 mg/kg). Mice underwent a nine-day protocol, receiving scopolamine injections (2 mg/kg) for the final three days to induce cognitive impairment. Donepezil, teriflunomide, and LY294002 treatments were given continuously for 9 days. MWM, Y-maze, OFT and rota-rod tests were conducted on days 7 and 9. On the last day, blood samples were collected for serum TNF-α analysis, after which the mice were sacrificed, and brain samples were harvested for oxidative stress analysis. RESULTS: Scopolamine administration for three consecutive days increased the time required to reach the platform in the MWM test, whereas, reduced the percentage of spontaneous alternations in the Y-maze, number of square crossing in OFT and retention time in the rota-rod test. In biochemical analysis, scopolamine downregulated the brain GSH level, whereas it upregulated the brain TBARS and serum TNF-α levels. Teriflunomide treatment effectively mitigated all the behavioral and biochemical alterations induced by scopolamine. Furthermore, LY294002 administration reduced the memory function and GSH level, whereas, uplifted the serum TNF-α levels. Teriflunomide abrogated the memory-impairing, GSH-lowering, and TNF-α-increasing effects of LY294002. CONCLUSION: Our results delineate that the improvement in memory, locomotion, and motor coordination might be attributed to the oxidative and inflammatory stress inhibitory potential of teriflunomide. Moreover, PI3K inhibition-induced memory impairment might be attributed to reduced GSH levels and increased TNF-α levels.


Cognitive Dysfunction , Crotonates , Hydroxybutyrates , Nitriles , Oxidative Stress , Toluidines , Animals , Nitriles/pharmacology , Mice , Hydroxybutyrates/pharmacology , Crotonates/pharmacology , Toluidines/pharmacology , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Oxidative Stress/drug effects , Male , Disease Models, Animal , Maze Learning/drug effects , Behavior, Animal/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Scopolamine/pharmacology , Chromones/pharmacology , Memory/drug effects , Cognition/drug effects , Brain/metabolism , Brain/drug effects , Morpholines/pharmacology , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Donepezil/pharmacology
7.
Methods Mol Biol ; 2799: 243-255, 2024.
Article En | MEDLINE | ID: mdl-38727911

Zebrafish are a powerful system to study brain development and to dissect the activity of complex circuits. One advantage is that they display complex behaviors, including prey capture, learning, responses to photic and acoustic stimuli, and social interaction (Dreosti et al., Front Neural Circuits 9:39, 2015; Bruckner et al., PLoS Biol 20:e3001838, 2022; Zoodsma et al., Mol Autism 13:38, 2022) that can be probed to assess brain function. Many of these behaviors are easily assayed at early larval stages, offering a noninvasive and high-throughput readout of nervous system function. Additionally, larval zebrafish readily uptake small molecules dissolved in water making them ideal for behavioral-based drug screens. Together, larval zebrafish and their behavioral repertoire offer a means to rapidly dissect brain circuitry and can serve as a template for high-throughput small molecule screens.NMDA receptor subunits are highly conserved in zebrafish compared to mammals (Zoodsma et al., Mol Autism 13:38, 2022; Cox et al., Dev Dyn 234:756-766, 2005; Zoodsma et al., J Neurosci 40:3631-3645, 2020). High amino acid and domain structure homology between humans and zebrafish underlie conserved functional similarities. Here we describe a set of behavioral assays that are useful to study the NMDA receptor activity in brain function.


Behavior, Animal , Receptors, N-Methyl-D-Aspartate , Zebrafish , Animals , Zebrafish/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Behavior, Animal/drug effects , Larva/metabolism , Brain/metabolism , Brain/drug effects , High-Throughput Screening Assays/methods
8.
Sci Adv ; 10(18): eadl2991, 2024 May 03.
Article En | MEDLINE | ID: mdl-38691615

Amyloid fibrils of tau are increasingly accepted as a cause of neuronal death and brain atrophy in Alzheimer's disease (AD). Diminishing tau aggregation is a promising strategy in the search for efficacious AD therapeutics. Previously, our laboratory designed a six-residue, nonnatural amino acid inhibitor D-TLKIVW peptide (6-DP), which can prevent tau aggregation in vitro. However, it cannot block cell-to-cell transmission of tau aggregation. Here, we find D-TLKIVWC (7-DP), a d-cysteine extension of 6-DP, not only prevents tau aggregation but also fragments tau fibrils extracted from AD brains to neutralize their seeding ability and protect neuronal cells from tau-induced toxicity. To facilitate the transport of 7-DP across the blood-brain barrier, we conjugated it to magnetic nanoparticles (MNPs). The MNPs-DP complex retains the inhibition and fragmentation properties of 7-DP alone. Ten weeks of MNPs-DP treatment appear to reverse neurological deficits in the PS19 mouse model of AD. This work offers a direction for development of therapies to target tau fibrils.


Alzheimer Disease , Disease Models, Animal , Magnetite Nanoparticles , tau Proteins , Animals , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , tau Proteins/metabolism , tau Proteins/chemistry , Mice , Humans , Magnetite Nanoparticles/chemistry , Amyloid/metabolism , Amyloid/chemistry , Mice, Transgenic , Behavior, Animal/drug effects , Peptides/chemistry , Peptides/pharmacology , Protein Aggregation, Pathological/metabolism , Brain/metabolism , Brain/pathology , Brain/drug effects
9.
Proc Natl Acad Sci U S A ; 121(21): e2319595121, 2024 May 21.
Article En | MEDLINE | ID: mdl-38739786

As a global problem, fine particulate matter (PM2.5) really needs local fixes. Considering the increasing epidemiological relevance to anxiety and depression but inconsistent toxicological results, the most important question is to clarify whether and how PM2.5 causally contributes to these mental disorders and which components are the most dangerous for crucial mitigation in a particular place. In the present study, we chronically subjected male mice to a real-world PM2.5 exposure system throughout the winter heating period in a coal combustion area and revealed that PM2.5 caused anxiety and depression-like behaviors in adults such as restricted activity, diminished exploratory interest, enhanced repetitive stereotypy, and elevated acquired immobility, through behavioral tests including open field, elevated plus maze, marble-burying, and forced swimming tests. Importantly, we found that dopamine signaling was perturbed using mRNA transcriptional profile and bioinformatics analysis, with Drd1 as a potential target. Subsequently, we developed the Drd1 expression-directed multifraction isolating and nontarget identifying framework and identified a total of 209 compounds in PM2.5 organic extracts capable of reducing Drd1 expression. Furthermore, by applying hierarchical characteristic fragment analysis and molecular docking and dynamics simulation, we clarified that phenyl-containing compounds competitively bound to DRD1 and interfered with dopamine signaling, thereby contributing to mental disorders. Taken together, this work provides experimental evidence for researchers and clinicians to identify hazardous factors in PM2.5 and prevent adverse health outcomes and for local governments and municipalities to control source emissions for diminishing specific disease burdens.


Anxiety , Depression , Particulate Matter , Receptors, Dopamine D1 , Animals , Particulate Matter/toxicity , Mice , Male , Anxiety/metabolism , Depression/metabolism , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D1/genetics , Air Pollutants/toxicity , Behavior, Animal/drug effects , Molecular Docking Simulation
10.
Pak J Pharm Sci ; 37(1): 53-63, 2024 Jan.
Article En | MEDLINE | ID: mdl-38741400

The study focused on the neuroprotective role of Sorghum bicolor and vitamin C in the amelioration of oxidative stress and anxiety-like behavoiur induced by tramadol in male albino rats. The study design involved 7 groups and a control group with 5 male albino rats in each group. Tramadol (40 mg/kg) treatment was administered for 21 days. Tramadol 40mg/kg was administered in all groups. Pretreatment with varying doses of Sorghum bicolor and Vitamin C was done in three of the groups. Behavioral assessment of anxiety and locomotors actions of the groups were compared using Elevated Plus Maze (EPM) and Open Field Test (OFT). In conclusion, Sorghum bicolor and Vitamin C tramadol ameliorated oxidative stress and anxiety-like behaviour induced by tramadol. Pretreatment with Sorghum bicolor or vitamin C (100mg) can also reduced anxiogenic responses in male albino rats that are induced by chronic tramadol use.


Anxiety , Ascorbic Acid , Behavior, Animal , Oxidative Stress , Sorghum , Tramadol , Animals , Tramadol/pharmacology , Oxidative Stress/drug effects , Male , Ascorbic Acid/pharmacology , Anxiety/prevention & control , Anxiety/chemically induced , Anxiety/drug therapy , Rats , Behavior, Animal/drug effects , Antioxidants/pharmacology , Brain/drug effects , Brain/metabolism , Neuroprotective Agents/pharmacology , Plant Extracts/pharmacology , Rats, Wistar , Analgesics, Opioid/pharmacology , Anti-Anxiety Agents/pharmacology , Maze Learning/drug effects
11.
Pak J Pharm Sci ; 37(1): 129-137, 2024 Jan.
Article En | MEDLINE | ID: mdl-38741409

Stress is described as a noxious stimulus that affects the health of an individual and alters body homeostasis resulting in changes the individual behavioural and metabolic condition. Synthesis of drug from plants has main interest due the significant medicinal values. The recent investigation was designed to examine the pharmacological impacts of Ficus carica leaves extract on stress. In this experiment, the rodents were randomly distributed as (n=6) control rats were kept at standard condition, second group of rats were exposed with different stressors and Third group of rodents was exposed to stress and treated with extract of ficus carica leaves at the dose of 100 mg/kg. Acute behavioural alteration was observed after 7 days and prolonged impact was monitored after the 28 days. The current finding showed that administration of Ficus carica leaves extract produced anxiolytic behaviours and decreased depression like symptoms in CUMS treated rats. It also increased stimulatory, ambulatory, locomotor activity and enhanced spatial working memory and recognition memory in CUMS exposed rats. So, it can be concluded from recent study that leaves of Ficus carica can be utilized as secure drug for curing physiological stress with less side effect profile.


Behavior, Animal , Disease Models, Animal , Ficus , Plant Extracts , Plant Leaves , Stress, Psychological , Animals , Ficus/chemistry , Plant Extracts/pharmacology , Behavior, Animal/drug effects , Stress, Psychological/drug therapy , Male , Rats , Rats, Wistar , Anti-Anxiety Agents/pharmacology , Depression/drug therapy
12.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38732149

Manganese (Mn), a cofactor for various enzyme classes, is an essential trace metal for all organisms. However, overexposure to Mn causes neurotoxicity. Here, we evaluated the effects of exposure to Mn chloride (MnCl2) on viability, morphology, synapse function (based on neurogranin expression) and behavior of zebrafish larvae. MnCl2 exposure from 2.5 h post fertilization led to reduced survival (60%) at 5 days post fertilization. Phenotypical changes affected body length, eye and olfactory organ size, and visual background adaptation. This was accompanied by a decrease in both the fluorescence intensity of neurogranin immunostaining and expression levels of the neurogranin-encoding genes nrgna and nrgnb, suggesting the presence of synaptic alterations. Furthermore, overexposure to MnCl2 resulted in larvae exhibiting postural defects, reduction in motor activity and impaired preference for light environments. Following the removal of MnCl2 from the fish water, zebrafish larvae recovered their pigmentation pattern and normalized their locomotor behavior, indicating that some aspects of Mn neurotoxicity are reversible. In summary, our results demonstrate that Mn overexposure leads to pronounced morphological alterations, changes in neurogranin expression and behavioral impairments in zebrafish larvae.


Behavior, Animal , Larva , Manganese , Neurogranin , Zebrafish , Animals , Zebrafish/metabolism , Larva/drug effects , Behavior, Animal/drug effects , Neurogranin/metabolism , Neurogranin/genetics , Manganese/toxicity , Chlorides/toxicity , Manganese Compounds
13.
Brain Res ; 1834: 148913, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38580046

Hypothalamic-pituitary-adrenal (HPA) axis dysregulation is linked to the pathophysiology of depression. Although exogenous adrenocorticotropic hormone (ACTH) is associated with a depressive-like phenotype in rodents, comprehensive neurobehavioral and mechanistic evidence to support these findings are limited. Sprague-Dawley rats (male, n = 30; female, n = 10) were randomly assigned to the control (male, n = 10) or ACTH (male, n = 20; female n = 10) groups that received saline (0.1 ml, sc.) or ACTH (100 µg/day, sc.), respectively, for two weeks. Thereafter, rats in the ACTH group were subdivided to receive ACTH plus saline (ACTH_S; male, n = 10; female, n = 5; 0.2 ml, ip.) or ACTH plus imipramine (ACTH_I; male, n = 10; female, n = 5;10 mg/kg, ip.) for a further four weeks. Neurobehavioral changes were assessed using the forced swim test (FST), the sucrose preference test (SPT), and the open field test (OFT). Following termination, the brain regional mRNA expression of BDNF and CREB was determined using RT-PCR. After two-weeks, ACTH administration significantly increased immobility in the FST (p = 0.03), decreased interaction with the center of the OFT (p < 0.01), and increased sucrose consumption (p = 0.03) in male, but not female rats. ACTH administration significantly increased the expression of BDNF in the hippocampus and CREB in all brain regions in males (p < 0.05), but not in female rats. Imipramine treatment did not ameliorate these ACTH-induced neurobehavioral or molecular changes. In conclusion, ACTH administration resulted in a sex-specific onset of depressive-like symptoms and changes in brain regional expression of neurotrophic factors. These results suggest sex-specific mechanisms underlying the development of depressive-like behavior in a model of ACTH-induced HPA axis dysregulation.


Adrenocorticotropic Hormone , Brain-Derived Neurotrophic Factor , Disease Models, Animal , Hypothalamo-Hypophyseal System , Imipramine , Pituitary-Adrenal System , Rats, Sprague-Dawley , Animals , Male , Female , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/drug effects , Pituitary-Adrenal System/metabolism , Pituitary-Adrenal System/drug effects , Brain-Derived Neurotrophic Factor/metabolism , Imipramine/pharmacology , Rats , Depression/metabolism , Behavior, Animal/drug effects , Hippocampus/metabolism , Hippocampus/drug effects , Cyclic AMP Response Element-Binding Protein/metabolism
14.
Chemosphere ; 357: 142026, 2024 Jun.
Article En | MEDLINE | ID: mdl-38615959

The consumption of antidepressants, such as fluoxetine, has increased over the years and, as a result, they are increasingly found in aquatic systems. Given the increasing use of zebrafish as an animal model in toxicological studies, this work proposed to evaluate the effects of chronic exposure, for 21 days, to fluoxetine at environmentally relevant concentrations (1, 10, 100, and 1000 ng/L). The behavioral tests performed did not reveal significant effects of fluoxetine. However, oxidative stress and changes in energy metabolism were detected after exposure to the highest concentrations of fluoxetine tested, namely a decrease in glutathione S-transferase (GST) activity (decrease of ca. 31%), increase in catalase (CAT) activity (increase of ca. 71%), and decrease in lactate dehydrogenase (LDH) activity (decrease of ca. 53%). Analysis of the fatty acid profile (FA) revealed a decrease in the omega-3 FA, docosahexaenoic acid (DHA), C22:6 (decrease in relative abundance between 6% and 8% for both the head and body), an increase in omega-6 FA, linoleic acid (LA), C18:2, (increased relative abundance between 8% and 11% in the head and between 5% and 9% in the body), which may suggest changes in the inflammatory state of these organisms. The integrated analysis adopted proved to be useful in detecting subindividual effects of fluoxetine and modes of action in fish.


Behavior, Animal , Fatty Acids , Fluoxetine , Oxidative Stress , Water Pollutants, Chemical , Zebrafish , Fluoxetine/toxicity , Animals , Water Pollutants, Chemical/toxicity , Behavior, Animal/drug effects , Oxidative Stress/drug effects , Fatty Acids/metabolism , Glutathione Transferase/metabolism , Catalase/metabolism
15.
Behav Brain Res ; 467: 115005, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38641178

BACKGROUND: Post-traumatic stress disorder (PTSD) refers to a chronic impairing psychiatric disorder occurring after exposure to the severe traumatic event. Studies have demonstrated that medicinal cannabis oil plays an important role in neuroprotection, but the mechanism by which it exerts anti-PTSD effects remains unclear. METHODS: The chronic complex stress (CCS) simulating the conditions of long voyage stress for 4 weeks was used to establish the PTSD mice model. After that, behavioral tests were used to evaluate PTSD-like behaviors in mice. Mouse brain tissue index was detected and hematoxylin-eosin staining was used to assess pathological changes in the hippocampus. The indicators of cell apoptosis and the BDNF/TRPC6 signaling activation in the mice hippocampus were detected by western blotting or real-time quantitative reverse transcription PCR experiments. RESULTS: We established the PTSD mice model induced by CCS, which exhibited significant PTSD-like phenotypes, including increased anxiety-like and depression-like behaviors. Medicinal cannabis oil treatment significantly ameliorated PTSD-like behaviors and improved brain histomorphological abnormalities in CCS mice. Mechanistically, medicinal cannabis oil reduced CCS-induced cell apoptosis and enhanced the activation of BDNF/TRPC6 signaling pathway. CONCLUSIONS: We constructed a PTSD model with CCS and medicinal cannabis oil that significantly improved anxiety-like and depressive-like behaviors in CCS mice, which may play an anti-PTSD role by stimulating the BDNF/TRPC6 signaling pathway.


Anxiety , Brain-Derived Neurotrophic Factor , Depression , Disease Models, Animal , Hippocampus , Signal Transduction , Stress Disorders, Post-Traumatic , TRPC6 Cation Channel , Animals , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/drug effects , Mice , Signal Transduction/drug effects , Anxiety/drug therapy , Anxiety/metabolism , Male , Depression/drug therapy , Depression/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Stress Disorders, Post-Traumatic/drug therapy , Stress Disorders, Post-Traumatic/metabolism , TRPC6 Cation Channel/metabolism , Behavior, Animal/drug effects , Medical Marijuana/pharmacology , Mice, Inbred C57BL , Apoptosis/drug effects , Plant Oils/pharmacology , Plant Oils/administration & dosage , Stress, Psychological/drug therapy , Stress, Psychological/metabolism
16.
Eur J Pharmacol ; 973: 176582, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38642668

The growing burden of psychological stress among diabetes patients has contributed to a rising incidence of depression within this population. It is of significant importance to conduct research on the impact of stress on diabetes patients and to explore potential pharmacological interventions to counteract the stress-induced exacerbation of their condition. Gastrodin is a low molecular weight bioactive compound extracted from the rhizome of Gastrodiae elata Blume, and it may be a preventive strategy for diabetes and a novel treatment for depression symptoms. However, its relevant pharmacological mechanisms for protecting against the impacts of psychological stress in diabetic patients are unclear. In this study, we performed 5 weeks CUMS intervention and simultaneously administered gastrodin (140 mg/kg, once daily) on T2DM mice, to investigate the potential protective effects of gastrodin. The protective effect of gastrodin was evaluated by behavioral tests, biochemical analysis, histopathological examination, RT-qPCR and gut microbiota analysis. We found that the depressive-like behavior and glucolipid metabolism could be deteriorated by chronic stress in type 2 diabetic mice, while gastrodin showed a protective effect against these exacerbations by regulating HPA hormones, activating FXR and Cyp7a1, reducing inflammatory and oxidative stress responses, and regulating ileal gut microbiota abundance. Gastrodin might be a potential therapeutic agent for mitigating the deterioration of diabetes conditions due to chronic stress.


Behavior, Animal , Benzyl Alcohols , Depression , Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Glucosides , Stress, Psychological , Animals , Benzyl Alcohols/pharmacology , Benzyl Alcohols/therapeutic use , Glucosides/pharmacology , Glucosides/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/psychology , Depression/drug therapy , Depression/metabolism , Male , Mice , Stress, Psychological/drug therapy , Stress, Psychological/complications , Stress, Psychological/metabolism , Stress, Psychological/psychology , Gastrointestinal Microbiome/drug effects , Behavior, Animal/drug effects , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/complications , Mice, Inbred C57BL , Oxidative Stress/drug effects , Chronic Disease
17.
Behav Pharmacol ; 35(4): 156-160, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38651975

Exposure to chronic caffeine during adolescence has been shown to produce decreased anxiety-like behaviors in rats as well as decreased immobility in the forced swim test (FST) suggesting an antidepressant-like effect. The effects of chronic caffeine on anxiety, however, have been found to be test-dependent and sexually dimorphic. In addition, decreased immobility in the FST has been argued to reflect a shift toward active coping behavior as opposed to an antidepressant-like effect. In order to further characterize the effects of adolescent caffeine exposure, the present experiment assessed the effects of caffeine on marble burying behavior in a two-zone marble burying task. There was no difference in the amount of time rats spent in the two zones failing to support a shift in coping strategy. Caffeine-exposed rats spent less time engaged in marble burying activity and buried slightly fewer marbles, suggesting an anxiolytic effect of caffeine. In addition, caffeine treated rats spent less time engaged in nondirected burying and slightly more time actively engaging with the marbles; however, these effects appeared to be sexually dimorphic as they were driven by larger changes in the females. Overall, these results support an anxiolytic effect of adolescent caffeine, with female behavior appearing to be more affected by caffeine than males.


Anxiety , Behavior, Animal , Caffeine , Animals , Caffeine/pharmacology , Caffeine/administration & dosage , Male , Anxiety/drug therapy , Female , Rats , Behavior, Animal/drug effects , Central Nervous System Stimulants/pharmacology , Anti-Anxiety Agents/pharmacology , Rats, Sprague-Dawley , Motor Activity/drug effects
18.
Behav Pharmacol ; 35(4): 211-226, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38651984

Stimulation of the innate immune system prior to stress exposure is a possible strategy to prevent depression under stressful conditions. Based on the innate immune system stimulating activities of zymosan A, we hypothesize that zymosan A may prevent the development of chronic stress-induced depression-like behavior. Our results showed that a single injection of zymosan A 1 day before stress exposure at a dose of 2 or 4 mg/kg, but not at a dose of 1 mg/kg, prevented the development of depression-like behaviors in mice treated with chronic social defeat stress (CSDS). The prophylactic effect of a single zymosan A injection (2 mg/kg) on CSDS-induced depression-like behaviors disappeared when the time interval between zymosan A and stress exposure was extended from 1 day or 5 days to 10 days, which was rescued by a second zymosan A injection 10 days after the first zymosan A injection and 4 days (4×, once daily) of zymosan A injections 10 days before stress exposure. Further analysis showed that a single zymosan A injection (2 mg/kg) 1 day before stress exposure could prevent the CSDS-induced increase in pro-inflammatory cytokines in the hippocampus and prefrontal cortex. Inhibition of the innate immune system by pretreatment with minocycline (40 mg/kg) abolished the preventive effect of zymosan A on CSDS-induced depression-like behaviors and CSDS-induced increase in pro-inflammatory cytokines in the brain. These results suggest that activation of the innate immune system triggered by zymosan A prevents the depression-like behaviors and neuroinflammatory responses in the brain induced by chronic stress.


Depression , Hippocampus , Stress, Psychological , Zymosan , Animals , Zymosan/pharmacology , Mice , Stress, Psychological/immunology , Male , Depression/drug therapy , Hippocampus/drug effects , Hippocampus/metabolism , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Cytokines/metabolism , Behavior, Animal/drug effects , Social Defeat , Immunization/methods , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/immunology , Mice, Inbred C57BL , Disease Models, Animal , Minocycline/pharmacology , Dose-Response Relationship, Drug
19.
Behav Pharmacol ; 35(4): 227-238, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38651981

We have previously reported that two inhibitors of an E3 ligase S-phase kinase-associated protein 2 (Skp2), SMIP004 and C1, have an antidepressant-like effect in non-stressed and chronically stressed mice. This prompted us to ask whether other Skp2 inhibitors could also have an antidepressant effect. Here, we used NSC689857, another Skp2 inhibitor, to investigate this hypothesis. The results showed that administration of NSC689857 (5 mg/kg) produced an antidepressant-like effect in a time-dependent manner in non-stressed male mice, which started 8 days after drug administration. Dose-dependent analysis showed that administration of 5 and 10 mg/kg, but not 1 mg/kg, of NSC689857 produced antidepressant-like effects in both non-stressed male and female mice. Administration of NSC689857 (5 mg/kg) also induced antidepressant-like effects in non-stressed male mice when administered three times within 24 h (24, 5, and 1 h before testing) but not when administered acutely (1 h before testing). In addition, NSC689857 and fluoxetine coadministration produced additive antidepressant-like effects in non-stressed male mice. These effects of NSC689857 were not associated with the changes in locomotor activity. Administration of NSC689857 (5 mg/kg) also attenuated depression-like behaviors in male mice induced by chronic social defeat stress, suggesting therapeutic potential of NSC689857 in depression. Overall, these results suggest that NSC689857 is capable of exerting antidepressant-like effects in both non-stressed and chronically stressed mice.


Antidepressive Agents , Benzothiepins , Depression , Dose-Response Relationship, Drug , Fluoxetine , S-Phase Kinase-Associated Proteins , Stress, Psychological , Animals , Male , Antidepressive Agents/pharmacology , S-Phase Kinase-Associated Proteins/metabolism , Mice , Female , Depression/drug therapy , Stress, Psychological/drug therapy , Fluoxetine/pharmacology , Disease Models, Animal , Behavior, Animal/drug effects
20.
Behav Pharmacol ; 35(4): 239-252, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38567447

Rapid-eye movement (REM) sleep deprivation (SD) can induce manic-like behaviors including hyperlocomotion. On the other hand, crocin (one of the main compounds of Crocus sativus L. or Saffron) may be beneficial in the improvement of mental and cognitive dysfunctions. Also, crocin can restore the deleterious effects of SD on mental and cognitive processes. In this study, we investigated the effect of REM SD on female rats' behaviors including depression- and anxiety-like behaviors, locomotion, pain perception, and obsessive-compulsive-like behavior, and also, the potential effect of crocin on REM SD effects. We used female rats because evidence on the role of REM SD in modulating psychological and behavioral functions of female (but not male) rats is limited. REM SD was induced for 14 days (6h/day), and crocin (25, 50, and 75 mg/kg) was injected intraperitoneally. Open field test, forced swim test, hot plate test, and marble burying test were used to assess rats' behaviors. The results showed REM SD-induced manic-like behavior (hyperlocomotion). Also, REM SD rats showed decreased anxiety- and depression-like behavior, pain subthreshold (the duration it takes for the rat to feel pain), and showed obsessive compulsive-like behavior. However, crocin at all doses partially or fully reversed REM SD-induced behavioral changes. In conclusion, our results suggested the possible comorbidity of OCD and REM SD-induced manic-like behavior in female rats or the potential role of REM SD in the etiology of OCD, although more studies are needed. In contrast, crocin can be a possible therapeutic choice for decreasing manic-like behaviors.


Carotenoids , Crocus , Sleep Deprivation , Animals , Female , Rats , Sleep Deprivation/drug therapy , Sleep Deprivation/complications , Carotenoids/pharmacology , Obsessive-Compulsive Disorder/drug therapy , Anxiety/drug therapy , Behavior, Animal/drug effects , Mania/drug therapy , Depression/drug therapy , Rats, Wistar , Disease Models, Animal , Bipolar Disorder/drug therapy , Sleep, REM/drug effects , Dose-Response Relationship, Drug
...